Mixed type iterations for multivalued nonexpansive mappings in hyperbolic spaces
نویسندگان
چکیده
منابع مشابه
Convergence theorems for generalized nonexpansive multivalued mappings in hyperbolic spaces
In this paper, we establish the existence of a fixed point for generalized nonexpansive multivalued mappings in hyperbolic spaces and we prove some [Formula: see text]-convergence and strong convergence theorems for the iterative scheme proposed by Chang et al. (Appl Math Comp 249:535-540, 2014) to approximate a fixed point for generalized nonexpansive multivalued mapping under suitable conditi...
متن کاملExistence and convergence results for monotone nonexpansive type mappings in partially ordered hyperbolic metric spaces
We present some existence and convergence results for a general class of nonexpansive mappings in partially ordered hyperbolic metric spaces. We also give some examples to show the generality of the mappings considered herein.
متن کاملGeodesic metric spaces and generalized nonexpansive multivalued mappings
In this paper, we present some common fixed point theorems for two generalized nonexpansive multivalued mappings in CAT(0) spaces as well as in UCED Banach spaces. Moreover, we prove the existence of fixed points for generalized nonexpansive multivalued mappings in complete geodesic metric spaces with convex metric for which the asymptotic center of a bounded sequence in a bounded closed convex...
متن کاملEndpoints of multivalued nonexpansive mappings in geodesic spaces
Let X be either a uniformly convex Banach space or a reflexive Banach space having the Opial property. It is shown that a multivalued nonexpansive mapping on a bounded closed convex subset of X has an endpoint if and only if it has the approximate endpoint property. This is the first result regarding the existence of endpoints for such kind of mappings even in Hilbert spaces. The related result...
متن کاملFixed points of multivalued nonexpansive mappings in Banach spaces
* Correspondence: [email protected] Department of Mathematics, Ataturk University, Erzurum 25240, Turkey Full list of author information is available at the end of the article Abstract In this article, we first give a multivalued version of an iteration scheme of Agarwal et al. We use an idea due to Shahzad and Zegeye which removes a “strong condition” on the mapping involved in the ite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2014
ISSN: 1687-1812
DOI: 10.1186/1687-1812-2014-140